

Abstracts

Dual-Ferrite Slot Line for Broadband, High-Nonreciprocity Phase Shifters

E.-B. El-Sharawy and C.J. Koza. "Dual-Ferrite Slot Line for Broadband, High-Nonreciprocity Phase Shifters." 1991 Transactions on Microwave Theory and Techniques 39.12 (Dec. 1991 [T-MTT] (1991 Symposium Issue)): 2204-2210.

A novel phase shifting structure that exhibits both broadband operation and high nonreciprocity is presented. This structure is comprised of a slot line between two oppositely-magnetized ferrite substrates. A full-wave, spectral-domain analysis is used, where Green's functions are formulated using a transmission matrix approach. By eliminating the use of relatively thick high-dielectric substrates, a bandwidth of 3:1 and a differential phase of 50° /cm are feasible. The geometry of the present structure can be optimized to increase both the nonreciprocity and the bandwidth. The characteristic impedance of the slot line is presented and shows a strong dependence on the slot width and the state of ferrite magnetization. The addition of thin layers of high-dielectric material increases the differential phase to over 100° /cm without significantly reducing the bandwidth. These layers were found to reduce the variation of characteristic impedance versus the ferrite magnetization.

[Return to main document.](#)